Graph-driven features extraction from microarray data
نویسندگان
چکیده
Gene function prediction from microarray data is a first step toward better understanding the machinery of the cell from relatively cheap and easy-to-produce data. In this paper we investigate whether the knowledge of many metabolic pathways and their catalyzing enzymes accumulated over the years can help improve the performance of classifiers for this problem. The complex network of known biochemical reactions in the cell results in a representation where genes are nodes of a graph. Formulating the problem as a graph-driven features extraction problem, based on the simple idea that relevant features are likely to exhibit correlation with respect to the topology of the graph, we end up with an algorithm which involves encoding the network and the set of expression profiles into kernel functions, and performing a regularized form of canonical correlation analysis in the corresponding reproducible kernel Hilbert spaces. Function prediction experiments for the genes of the yeast S. Cerevisiae validate this approach by showing a consistent increase in performance when a state-of-the-art classifier uses the vector of features instead of the original expression profile to predict the functional class of a gene.
منابع مشابه
Graph-Driven Feature Extraction From Microarray Data Using Diffusion Kernels and Kernel CCA
We present an algorithm to extract features from high-dimensional gene expression profiles, based on the knowledge of a graph which links together genes known to participate to successive reactions in metabolic pathways. Motivated by the intuition that biologically relevant features are likely to exhibit smoothness with respect to the graph topology, the algorithm involves encoding the graph an...
متن کاملA PCA/ICA based Fetal ECG Extraction from Mother Abdominal Recordings by Means of a Novel Data-driven Approach to Fetal ECG Quality Assessment
Background: Fetal electrocardiography is a developing field that provides valuable information on the fetal health during pregnancy. By early diagnosis and treatment of fetal heart problems, more survival chance is given to the infant.Objective: Here, we extract fetal ECG from maternal abdominal recordings and detect R-peaks in order to recognize fetal heart rate. On the next step, we find a be...
متن کاملتحلیل تصاویر ریزآرایه به منظور تشخیص نوع سرطان سینه
Background: Microarray technology is a powerful tool to study and analyze the behavior of thousands of genes simultaneously. Images of microarray have an important role in the detection and treatment of diseases. The aim of this study is to provide an automatic method for the extraction and analysis of microarray images to detect cancerous diseases. Methods: The proposed system consists of t...
متن کاملتحلیل تصاویر ریزآرایه به منظور تشخیص نوع سرطان سینه
Background: Microarray technology is a powerful tool to study and analyze the behavior of thousands of genes simultaneously. Images of microarray have an important role in the detection and treatment of diseases. The aim of this study is to provide an automatic method for the extraction and analysis of microarray images to detect cancerous diseases. Methods: The proposed system consists of t...
متن کاملA novel feature extraction approach for microarray data based on multi-algorithm fusion
Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002